Solving weakly singular integral equations utilizing the meshless local discrete collocation technique

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Discrete Collocation Method for Weakly Singular Integral Equations

Abstract. To find the approximate solutions of a weakly singular integral equation by the collocation method it is necessary to solve linear systems whose coefficients are expressed as integrals. These integrals cannot usually be computed exactly. We get the fully discrete collocation method when we approximate the integrals by quadrature formulas on nonuniform grid. In this paper an appropriat...

متن کامل

Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving the Weakly-Singular Traction & Displacement Boundary Integral Equations

The general Meshless Local PetrovGalerkin (MLPG) type weak-forms of the displacement & traction boundary integral equations are presented, for solids undergoing small deformations. These MLPG weak forms provide the most general basis for the numerical solution of the non-hyper-singular displacement and traction BIEs [given in Han, and Atluri (2003)], which are simply derived by using the gradie...

متن کامل

COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS

In this paper it is shown that the use of‎ ‎uniform meshes leads to optimal convergence rates provided that‎ ‎the analytical solutions of a particular class of‎ ‎Fredholm-Volterra integral equations (FVIEs) are smooth‎.

متن کامل

A Computational Meshless Method for Solving Multivariable Integral Equations

In this paper we use radial basis functions to solve multivariable integral equations. We use collocation method for implementation. Numerical experiments show the accuracy of the method.

متن کامل

The Numerical Solution of Weakly Singular Volterra Integral Equations By Collocation on Graded Meshes

Since the solution of a second-kind Volterra integral equation with weakly singular kernel has, in general, unbounded derivatives at the left endpoint of the interval of integration, its numerical solution by polynomial spline collocation on uniform meshes will lead to poor convergence rates. In this paper we investigate the convergence rates with respect to graded meshes, and we discuss the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Alexandria Engineering Journal

سال: 2018

ISSN: 1110-0168

DOI: 10.1016/j.aej.2017.09.015